IQWiG im Dialog

Verwendung von Beobachtungsdaten in der Nutzenbewertung – Einfluss von Design and Analysetechniken auf den Bias von Effektschätzungen

24. Juni 2025

Dr. Felicitas Kühne

Outcomes Research Manager; Pfizer Pharma GmbH Senior Scientist; UMIT TIROL - University for Health Sciences and Technology

Disclaimer

Die in dieser Präsentation geäußerten Ansichten und Meinungen sind meine und repräsentieren nicht notwendigerweise die offiziellen Standpunkte, Strategien oder Meinungen meines Arbeitgebers oder einer damit verbundenen Organisation.

- 1. Concept Causal Inference
- 2. Challenges of Observational Studies
- 3. Target Trial
- 4. Potential Biases: Case Example
- 5. So What?

Concept Causal inference

Prediction and Causal Effect

A — B

Statistical Relation: "If I learn ..."

- A is related to B
- If I learn about A, I know more about B than before (and vice versa)
- I can use A to (better) predict B and vice versa
- A and B are not independent
- Correlation coefficient $\neq 0$
- P(A and B) ≠ P(A)*P(B)
- Information "flows" between A and B

Causal Relation: "If I change"

- A causes B
- If I change A, B changes (not vice versa)
- I can use interventions on A to improve B (not vice versa)

 $- \mathsf{P}(\mathsf{B}|\mathsf{do}(\mathsf{A}=0)) \neq \mathsf{P}(\mathsf{B}|\mathsf{do}(\mathsf{A}=1))$

- Effect "flows" from A to B

Counterfactual Concept

Compare consequences $Y_A \rightarrow Y_I$

Action

Only actions and consequences of the

actions change

Everything else stays the same

- Time
- Climate
- Environment
- Social aspects
- Other actions

Challenges of observational studies

Challenges of Causal Analyses of RWD

Confounding	 Time independent and time dependent 					
Selection bias	 Selection by indication 					
Immortal time bias	• Time zero bias					
Adequate data	 Reliability Extent Accessibility 					

Immortal Time Bias

Adequate Data

Quelle: Datenqualitätsmanagement im Gesundheitswesen: 5 bewährte Methoden

Target Trial Emulation

- Structural approach mimicking the counterfactual approach
 - Develop the protocol for a hypothetical randomized trial ("target trial") that would address the research question of interest
- Target Trial can be used to
 - Avoid self-inflicted biases (time-zero bias, immortal time bias)
 - Control for time-dependent confounding
 - Useful for big data analysis
 - When-to-start-treatment questions

Target Trial

Potential biases: Case example

Asses Potential Biases in RWD: Compare traditional and causal methods

Check for updates

Journal of Clinical Epidemiology 152 (2022) 269-280

Clinical Epidemiology

Journal of

ORIGINAL ARTICLE

Causal analyses with target trial emulation for real-world evidence removed large self-inflicted biases: systematic bias assessment of ovarian cancer treatment effectiveness

Felicitas Kuehne^a, Marjan Arvandi^a, Lisa M. Hess^b, Douglas E. Faries^b, Raffaella Matteucci Gothe^a, Holger Gothe^{a,c}, Julie Beyrer^b, Alain Gustave Zeimet^d, Igor Stojkov^a, Nikolai Mühlberger^a, Willi Oberaigner^{a,e}, Christian Marth^d, Uwe Siebert^{a,f,g,*} ^aDepartment of Public Health, Health Services Research and Health Technology Assessment, Institute of Public Health, Medical Decision Making and Health Technology Assessment, UMIT TIROL – University for Health Sciences, Medical Informatics and Technology, Hall i.T., Austria ^bEli Lilly and Company, Indianapolis, IN, USA ^cChair of Health Sciences/Public Health, Medical Faculty "Carl Gustav Carus", Technical University Dresden, Dresden, Germany ^dDepartment of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria ^eInstitute for Clinical Epidemiology, Cancer Registry Tyrol, Tirol Kliniken, Innsbruck, Austria ^fCenter for Health Decision Science and Departments of Epidemiology and Health Policy & Management, Harvard T.H. Chan School of Public Health, Boston, MA, USA ^gInstitute for Technology Assessment and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

Accepted 3 October 2022; Published online 15 October 2022

This work was supported by the UMIT-Lilly Causal Inference in RWE Working Group:

UMIT TIROL: Marjan Arvandi, Annette Conrads-Frank, Holger Gothe, Raffaella Gothe, Beate Jahn, Nikolai Mühlberger, Sasa Rajsic, Ursula Rochau, Gaby Sroczynski, Uwe Siebert

Eli Lilly: Julie Kay Beyrer, Douglas E. Faries, Lisa M. Hess, Jeanne Marie Schilder, Yu Yan

Clinical experts: Christian Marth, Alain-Gustave Zeimet

Aim

Assess potential biases in causal analysis of large real-world database

Туре

Impact

Case of ovarian cancer

Aggressive disease with poor survival outcomes

Treatment

Surgery followed by chemotherapy

No standards for subsequent treatment lines

Population:

Ovarian cancer patients progressed after 1st-line treatment

Intervention:

With 2nd-line treatment (LOT2)

Comparison:

Without 2nd-line treatment

Outcome:

Overall survival (OS)

Methods

Retrospective observational study

IMS Oncology electronic medical records (EMR)

Oncology practices and comprehensive cancer centers in US

Causal graphs

Identify potential confounding and other biases Estimate direction of biases

Analyses

Completely Crude	Traditional Baseline Adjustment	Causal Methods	
Effect measure:	Hazard ratios (HR) 95% confidence intervals (95%CI)		

Methods

Compare to Reference Case

Early versus delayed treatment of relapsed ovarian cancer (MRC OV05/EORTC 55955): a randomised trial

Gordon J S Rustin, Maria E L van der Burg, Clare L Griffin, David Guthrie, Alan Lamont, Gordon C Jayson, Gunnar Kristensen, César Mediola, Corneel Coens, Wendi Qian, Mahesh K B Parmar, Ann Marie Swart, for the MRC OV05 and EORTC 55955 investigators*

Summary

Background Serum CA125 concentration often rises several months before clinical or symptomatic relapse in women with ovarian cancer. In the MRC OV05/EORTC 55955 collaborative trial, we aimed to establish the benefits of early treatment on the basis of increased CA125 concentrations compared with delayed treatment on the basis of clinical recurrence.

Methods Women with ovarian cancer in complete remission after first-line platinum-based chemotherapy and a

	Hazard ratio (95% CI)	Log-rank p value
Unadjusted	0.98 (0.80-1.20)	0.85
Adjusted		
For stratification factors*	0.99 (0.80-1.22)	
For prognostic factors†	0.98 (0.79–1.21)	
For stratification and prognostic factors	1.01 (0.82-1.25)	
Sensitivity analyses‡	1.01 (0.82-1.23)	0.96

* Age, International Federation of Gynecology and Obstetrics stage, first-line chemotherapy, time from completion of first-line chemotherapy to doubling of CA125 concentration, and country. †Histology, WHO performance status, and time from doubling of CA125 concentration to randomisation. ‡Sensitivity analyses of non-curtailed data (all follow-up data received, not curtailed at 5 years for MRC OV05 and 3 years for EORTC 55955).

Table 3: Hazard ratios for overall survival

Rustin GJ, et al. Early versus delayed treatment of relapsed ovarian cancer (MRC OV05/EORTC 55955): a randomised trial. Lancet. 2010 Oct 2; 376(9747):1155-63. doi: 10.1016/S0140-6736(10)61268-8. PMID: 20888993.

Analytic Strategies

Treatment Assignment

Treatment strategies:

Second line treatment (T)

Never treat (N)

Progression

X Start of treatment

† Death

O Censored

Treatment Assignment

THE TYROLEAN PRIVATE UNIVERSIT

Treatment strategies:

Second line treatment (T)

Never treat (N)

Progression

† Death

O Censored

Treatment Assignment

Directed Acyclic Graph (DAG)

Expert Panel Assessment of Assumed Bias Direction

Immortal time bias				Confounding				
Underestimates the treatment HR		Estima DAG	Estimation of bias direction using the DAG and techniques described by VanderWeele					
Bias				Direction of Bias (in favor/against LOT2) Estimation of HR				
				HR - in favor of LOT2	HR ± either	HR + against LOT2		
Confounding								
- Unmeasured	(disease severity, CT scan, symptoms)		nptoms)			Х		
	(education)			Х				
- Time-independent	(ascites, stage)					Х		
	(age, comorbidities	s, time since	LOT1)		Х			
- Time-dependent	(CA-125)					Х		
Immortal-time Bias				Х				
Selection Bias / Conf	ounding by indicati	on				Х		
HR: Hazar HR -: unde	d Ratio prestimation of HR	HR ±: either HR +: overe	r under- or overesti estimation of HR	mation of HR	CT: computer tomog LOT1: first line of tre	raphy eatment		
	CA: Cancer-Antigen;				LOT2: second line o	f treatment 29		

Results

Analytic Strategies	Reference Case				
	Ever vs. Ne	ever			
1. "Crude Cox"			1		
Without interaction of time and LOT2	ļ F				
2. "Adjusted . Cox"					
Without interaction of time and LOT2					
Treated vs. Untreated Person Time			i		
3. "Crude time-var. Cox"					
4. "Adjusted time-var. Cox"					
	Immediate vs.	Never			LOT2: 2 nd Line of treatment;
Target Trial Approach					vs: versus;
5. "Target trial PP"					time-var: time-varying;
6. "Target trial causal PP" (IPCW)					PP: per protocol:
	Immediate vs. I	Delayed			
Trial Emulation					IPCW: Inverse Probability of
7. "Partially emulated trial" (only strategi	es)	_			Censoring weighting;
8. "Fully emulated trial" (strategies, population	llation)				CI: Confidence Interval;
(0 0.5	; Hazard ratio	1 (HR) with 95%C	1.5 2	2

Potential for several biases

May go in different directions

Several techniques exist to avoid biases

Visual: DAG to identify confounding Structural: target trial approach Statistical: careful consideration

Results were similar to those of the clinical trial when following the full causal approach

Limitations of this Study

Present in study Comorbidities TC scans Symptoms Could show in DAGs that Missing data (in this study) → overestimation of HR

Other g-methods that could be considered g-estimation,

Rank preserving structural failure time model (RPSFT), Targeted likelihood estimation

Conclusion of this Study

Target trial emulation is a structural approach mimicking the counterfactual approach

Target trial emulation may avoid self-inflicted biases

So what?

Pfizer

Thank You

